Inverse eigenvalue problem of distance matrix via orthogonal matrix
نویسندگان
چکیده
منابع مشابه
The inverse eigenvalue problem via orthogonal matrices
In this paper we study the inverse eigenvalue problem for symmetric special matrices and introduce sufficient conditions for obtaining nonnegative matrices. We get the HROU algorithm from [1] and introduce some extension of this algorithm. If we have some eigenvectors and associated eigenvalues of a matrix, then by this extension we can find the symmetric matrix that its eigenvalue and eigenvec...
متن کاملA Test Matrix for an Inverse Eigenvalue Problem
We present a real symmetric tridiagonalmatrix of order nwhose eigenvalues are {2k}n−1 k=0 which also satisfies the additional condition that its leading principle submatrix has a uniformly interlaced spectrum, {2l + 1}n−2 l=0 . Thematrix entries are explicit functions of the size n, and so the matrix can be used as a test matrix for eigenproblems, both forward and inverse. An explicit solution ...
متن کاملM-Matrix Inverse problem for distance-regular graphs
We analyze when the Moore–Penrose inverse of the combinatorial Laplacian of a distance– regular graph is a M–matrix; that is, it has non–positive off–diagonal elements. In particular, our results include some previously known results on strongly regular graphs.
متن کاملMatrix representation of a sixth order Sturm-Liouville problem and related inverse problem with finite spectrum
In this paper, we find matrix representation of a class of sixth order Sturm-Liouville problem (SLP) with separated, self-adjoint boundary conditions and we show that such SLP have finite spectrum. Also for a given matrix eigenvalue problem $HX=lambda VX$, where $H$ is a block tridiagonal matrix and $V$ is a block diagonal matrix, we find a sixth order boundary value problem of Atkin...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2014
ISSN: 0024-3795
DOI: 10.1016/j.laa.2014.02.017